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ON THE INTEGRATED SCHEDULING OF HARDKILL AND
SOFTKILL ASSETS USING DYNAMIC PROGRAMMING

1 INTRODUCTION

In this report we investigate the Anti-Ship Cruise Missile (ASCM) point defense problem.
Our focus is the integrated employment of defensive systems that have a potential for harmful
interference. Because most shipboard defensive systems exploit the electromagnetic spectrum, the
potential for interference exists between many of these systems. Often the adverse effects of this
interference can be eliminated during system design or through retrofit programs. When this is not
practical, simple and effective policies have been developed for cases in which system effectiveness
is restricted to disjoint range bands [1]. The case of overlapping effective regions is considerably
more complex and less well understood, and it is the focus of this study.

Modem ASCMs rely on a combination of high speed, low altitude, and internal guidance to
reduce the period between ASCM detection and ASCM impact to under one minute. The concept
of defense in depth, illustrated in Figl1, has been applied to the design of defensive systems to
increase survival probability. Multiple systems that use different techniques and are effective in
different zones are used to minimize the probability that the ASCM will reach the ship. Outer zone
systems operate beyond the range of on board sensors and are provided by other platforms. Point
defense systems are restricted to the middle and inner zones. Middle zone systems are typically
effective at ranges from the horizon down to a few kilometers, and inner zone systems typically
operate within a few kilometers.

Systems that work by disrupting ASCM guidance, known as softkill systems, are most effective
in the middle zone. This is the same zone in which medium range "hardkill" systems such as Surface
to Air Missiles (SAM) are employed. Softkill systems are designed to disrupt ASCM guidance
through electromagnetic effects, but sometimes it is not possible to eliminate the interaction between
a softkill system and other defensive systems. To better understand the effect of this interaction
on the effectiveness of defensive system employment policies, we will investigate the interaction
between one softkill system, chaff, and one middle zone hardkill system, a SAM system. We chose
a SAM system because other hardkill systems have demonstrated more limited effectiveness in the
middle zone. Our choice of chaff was motivated by its widespread availability and by the difficulty
of finding a SAM firing schedule that does not unduly reduce its effectiveness.

We begin by developing system effectiveness models for the chaff and SAM systems against
a single ASCM. These single ASCM models provide the basis for our development of a multiple-
ASCM engagement model that we use to compute the probability of surviving an attack for a given
defensive system employment policy. We then investigate algorithms to find optimal policies. Two
approaches to the development of an optimal policy, exhaustive search and dynamic programming,
are presented.

Manuscript approved March 9, 1994.
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Fig. 1 - Defense in depth

2 SYSTEM EFFECTIVENESS MODELS

To understand the interaction between the SAM and chaff systems, ft is necessary to under-
stand the operation of each in some detail. Since our goal is to understand the consequences of
harmful interference, we will introduce only those details necessary to quantify the effects of that
interference. Furthermore, where the interference can be eliminated lay tactics that do not reduce
system effectiveness we will adopt those tactics to focus our attention on a single significant interac-
tion. While practical application of this research will require more detailed models, our restricted
focus should be sufficient to develop an understanding of the effect of such interactions on the
effectiveness of defensive system employment policies.

2.1 ASCM Guidance

Since the purpose of the chaff is to deceive the ASCM's guidance system, we begin our discussion
with a brief review of ASCM guidance. Modern ASCN~s use a variety of guidance techniques, and
some use multiple sensors. At ranges in the middle zone, radar is the most common sensor used
for ASCM guidance. Accordingly, we model a radar guided ASCM.

A radar seeker operates by radiating microwave energy in the direction of the target and process
the reflected signal to determine the target's location. The seeker that we model is a low-resolution,
monopulse seeker that uses leading edge tracking. This type of seeker processes signals returned
from a relatively small region in range, which is known as the "range gate." The attacker programs
the initial size and location of the range gate to ensure that the ship is contained within it. After
detecting the ship, the seeker periodically measures the energy received in each part of the range
gate and then updates the position of the range gate so that the target remains within it. Leading
edge tracking is a simple countermeasure against pulse delay techniques that might be used by a
defender. However, a leading edge tracking seeker is susceptible to deception by chaff. To implement
leading edge tracking, the ASCM seeker attempts to center the range gate on the nearest edge of
the target by biasing the tracker to place the leading edge of the signal near the center of the range
gate.

2
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2.2 Chaff System

Chaff rounds are deployed ballistically from the ship by using a launcher with a fixed position
and orientation. After a preprogrammed delay, the chaff round blooms into a large cloud of con-
ducting strips that float slowly to Earth. The strips are designed to efficiently reradiate incident
electromagnetic energy in the range of frequencies used by the ASCM seeker. Because the range
gate initially includes the ship, we must select a launcher orientation and a bloom delay that places
the chaff cloud near the ship when it blooms, if we hope to deceive the ASCM seeker. We can then
increase the range separation (along the ASCM ship axis) by moving the ship so that the ASCM
seeker must eventually choose between the two. If the seeker chooses the chaff cloud, and we also
increase the cross-range separation between the chaff cloud and the ship sufficiently, the ASCM
will miss the ship. We call this a successful "seduction." Unfortunately, the success of a seduction
attempt is difficult to determine while the ASCM is in the middle-zone, because there is no direct
way for the defender to measure the position of the ASCM's range gate, and the trajectory change
caused by a successful seduction is very small at those ranges.

The defender can exploit the leading edge bias of the ASCM seeker by initially placing the chaff
cloud between the ship and the ASCM and choosing a ship velocity vector that simultaneously
increases both the range and cross-range separation between the two objects. Figure 2 shows this
geometry with a reference frame centered on the moving ship. The time required to establish
the required cross-range separation establishes the minimum range at which a seduction can be
effective. We call this time ri, the time spent by the ASCM in the inner zone where chaff is
ineffective. Similarly, we refer to the time from ASCM detection until the ASCM enters the inner
zone as TM, the time spent by the ASCM in the middle zone.

Fig. 2 -- Chaff seduction geometry

When more than one object is in the range gate, the behavior of the ASCM seeker is based
on the combined signal return from all of the objects. The signal returned by the ship has been
observed to undergo large amplitude fluctuations as ship motion and multipath effects combine
to produce constructive and destructive interference in the signal returned by a small number of
dominant scatterers in different locations on the ship. The observed amplitude fluctuations in the
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signal returned by the chaff cloud are much smaller because the chaff cloud is made-up of a large
number of small scatterers that experience more consistent motion.

Instead of presenting a choice of range gate positions, we could force the ASCM to choose
between two objects that remain within the range gate but separate in bearing. Establishing
the required bearing separation requires either a very large cross-range separation or a very close
approach by the ASCM. The required cross-range separation is difficult to achieve while the ASCM
is in the middle zone, because the available time and ship speed are limited. For this reason
"bearing seduction" is an inner zone phenomenon. Hence, we will restrict our attention to range
gate seduction, which we henceforth refer to simply as seduction.

To develop an analytic model of seduction effectiveness, we performed extensive computer sim-
ulation of typical seduction scenarios. The C-based Routines for Understanding the Interaction
between ships, electronic warfare and missiles (CRUISE Missiles) simulation developed by the
Naval Research Laboratory was used. A ship model for a destroyer was used in conjunction with a
chaff model for super rapid blooming offboard chaff and an ASCN'l seeker model for a subsonic sea-
skimming radar-guided missile using a monopulse seeker and a low-resolution leading edge range
tracker. The relatively low sea state (0.5 meter root mean square wave height) we chose increased
sea surface reflections and thereby created significant multipath fading.

Figure 3 shows the position of the inner and outer edges of the ASCM's range gate as the
ship-chaff separation increases during a typical simulation run. The range extents of the ship and
the chaff cloud are plotted for reference. In repeated simulations, the ASCM seeker seemed to show
a marked preference for tracking either the ship or the chaff, even when both were in the range
gate. The range gate was observed to shift from the ship to the chaff cloud when the signal return
from the ship underwent a deep fade, and to shift back when the signal return from the ship again
dominated that of the chaff cloud. Once the separation became so large that only one object was
in the range gate, no further transitions were observed.

Outer

RANGE Ship
GATE

Inner

Chaff

TRANSITIONS

I I Time
II

Ship Chaff I Ship N
to & to to None

Chaff Ship IChaff I

Fig. 3 - Range gate position

To understand this behavior we must discuss radar seeker design in more detail. The optimum
ratio of peak signal to mean noise is obtained when the ASCM4's radar receiver uses a filter that
is matched to the transmitted pulse. For the rectangular transmitted pulse typically used by a
low-resolution seeker, a single point scatterer produces an output signal from the matched filter
that initially increases linearly with time for the duration of the transmitted pulse and then linearly
decreases with time for the same period. Objects with range extent will result in an output that
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is the magnitude of the coherent sum of several such triangles, each with a potentially different
amplitude, phase, and time delay. Figure 4 is a conceptual diagram that illustrates the time
relationship between the output of a matched filter for the chaff and the ship, as they separate in
range.

en

.2 | Chaff -- Ship

|Ship -Chaff 

0 Separation

Chaff Ship Chaff Ship

Range Gate .

Range Gate on Chaff Range Gate Range Gate Range Gate
on Chaff on Ship on Chaff on Ship
or Ship

Fig. 4 - Range gate behavior

To capture all of the matched filter output associated with a single scatterer, the range extent of
the range gate is chosen to correspond to twice the duration of the transmitted pulse. To implement
the leading edge tracking feature, we integrate the output of the matched filter over the range gate,
assigning twice as much weight to the output in the first half of the gate, as we do to the output
of the filter in the second half of the gate.

The position that the range gate would assume, if only the chaff or only the ship were present
and if the signal return from each object were uniformly distributed in range, is shown for reference
in Fig. 4. The range gate positions actually shift slightly as the relative predominance of the
scatterers that comprise the two objects change, but such shifts are small compared with the size
of the range gate. When the signal returned by the ship fades severely, the range gate moves to
the chaff-based position, if enough of the matched filter output resulting from the chaff is still in
the range gate at the time of the fade.

As the range separation between the chaff and the ship increases, the ability of the range gate
to move between them becomes more constrained. When they are superimposed in range (at the
far left in Fig. 4), the range gate can move easily between positions based on a dominant return
from the chaff or the ship. Eventually a separation is reached beyond which the leading edge bias of
the tracker precludes chaff-to-ship transitions. Ship-to-chaff transitions remain possible, however.
Finally, a sufficient separation is reached to prevent any transitions. If the range gate is tracking the
chaff when this separation is reached, the seduction will be successful. If the ship is being tracked,
the seduction will be unsuccessful. It is this one-way transition period that makes a leading edge
tracker particularly susceptible to seduction by chaff for some geometries.

If more than one chaff cloud is present simultaneously, the same analysis can be applied to the
motion of the range gate from one chaff cloud to another. Superimposed chaff clouds act like a
single chaff cloud that is more dense, while closely spaced chaff clouds act like a single chaff cloud
with a larger range extent. Chaff clouds with a sufficient range separation operate independently,
and only the one closest to the ship is capable of causing a seduction.

2.3 SAM System

Like an ASCM, the SAM that we model uses reflected microwave radiation for guidance. Instead
of placing the radar illuminator in the SAM, however, a large shipboard microwave illuminator,
known as a "SAM director," is used to illuminate the relatively small ASCM. The SAM is designed
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to fly a standard trajectory from launch until guidance information is received. This trajectory
prevents the use of the SAM system in the inner zone. Although the minimum range at which
the SAM system can be used is not necessarily the same as the boundary between the inner and
middle zones we defined for the chaff, the difference is slight, and we consider them to be the same
in order to avoid introducing additional notation.

The surveillance radar equipment installed on modern warships is able to detect an ASCM that
is above the horizon when tactical considerations allow its use. Against a sea-skimming AS(CM,
surveillance radar equipment has an initial detection range of approximately 20 km. Midcourse
guidance can be provided by a separate command channel or by horning on the reflected signal
energy from the SAM illuminator. Regardless of which technique is used for midcourse guidance,
the ASCM must be illuminated for several seconds immediately before the SAM reaches it to
facilitate terminal guidance.

We have chosen to model a SAM system that uses reflected signal energy for midcourse guidance,
because the requirement for continuous illumination increases the potential for harmful interference
from the SAM system. SAM director illumination is also limited by the horizon to about 20 k(m
against a sea-skimming ASCM. Because the ASCM must be illuminated for SAM guidance, it is not
sensible to launch a SAM until the ASCM is detected. Once an ASCMI is detected, however, a SAM
can be launched immediately. Because the SAM director and the SAM do not share a common
time base, a SAM using reflected signal energy for midcourse guidance has no way to determine
the distance to the ASCM. Therefore, each SAM guides towards all ASCMs in the middle zone on
the bearing illuminated by the SAM director. Wie assume here, for the saake of simplicity, that each
SAM tracks towards the closest ASCM.

Because SAMs employ a proximity fuse, the SAM is destroyed when it reaches the closest ASCM,
regardless of the fate of the ASCMl. The defender on the ship can rapidly determine whether an
ASCM has been destroyed by observing the reflected SANM director signal.

2.4 Chaff Effectiveness Model

The SAM system can significantly influence the probability of a successful seduction. This
results from domination of the signal returned from the chaff by the signal returned from the ship
when the SAM director is oriented towards the ASCM. The effect depends on the relative strength
of the signal returns from the ship itself and from the chaff, the design of the SAM director antenna,
and the design of the ASCM receiver.

Because we wish to study the effect of this interaction rather than its cause, we model the
interaction by introducing an overwhelmingly dominant point scatterer that is present only during
SAM director illumination. We have chosen a point scatterer with such a large radar cross section
that even during the deepest fade it will dominate the signal return from the chaff.

Figure 5 shows the effect of introducing the SAM director into our analysis of range gate
behavior. In that figure we have separately depicted the matched filter output associated with the
SAM director by using dashed lines. As before, when the chaff and the ship are superimposed in
range, the range gate can move easily between positions based on a dominant return from the chaff,
the ship, or the SAM director. Eventually separation A is reached, beyond which the leading edge
bias of the tracker precludes chaff-to-ship transitions when the SAM director is not illuminating the
ASCM. Ship-to-chaff transitions (and SAM director-to-chaff transitions) remain possible, however,
and SAM director illumination could still result in a chaff-to-SAM director transition. Subsequently,
separation B is reached, at which the matched filter output from the SAM director signal is outside
the range gate whenever the range gate's position is based on the chaff. Beyond separation B
chaff-to-SAM director transitions become impossible, although the leading-edge bias of the tracker
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Fig. 5 -Range gate behvior with a SAM director

still permits ship-to-chaff (and SAM director-to-chaff) transitions. Finally, separation C is reached.
Separation C is sufficient to prevent any transitions except the slight change in position associated
with a ship-to-SAM director transition or a SAM director-to-ship transition.

To achieve a successful seduction, the range gate must be tracking the chaff when this final
separation is reached. The probability of this occurrence depends on the signal returns from the
chaff, the ship, and the SAM director during the seduction attempt. We describe in detail the
case in which the range gate is initially tracking the ship in order to develop an expression for the
probability of a successful seduction, given that no previous seduction attempt was successful.

As Fig. 3 shows, at each instant in time the range gate is captured by the object within it
that is producing the strongest weighted output from the matched filter. When the SAM director
is not illuminating the ASCM, the ship's signal return usually dominates that of the chaff, even
when the chaff signal is weighted more heavily. Thus, when both objects are in the range gate, the
range gate is normally tracking the ship. Occasional fades by the ship reverse this predominance,
however, and lead to a temporary capture of the range gate by the chaff.

At relatively large separations, a range gate capture by the chaff places most of the ship outside
the range gate. When this occurs, recapture of the range gate by the ship is precluded as long as the
SAM director remains quiescent. If the range gate still includes the position of the SAM director,
however, the extremely strong signal from the SAM director captures the range gate whenever the
SAM director illuminates the ASCM. Once the SAM director moves out of the range gate, SAM
director illumination no longer affects the range gate's position. So, if the range gate is tracking
the chaff when the separation increases to the point where the SAM director is outside the range
gate, a successful seduction is assured.

Reference to Fig. 5 allows us to construct a seduction model based on this behavior. We have
assumed that the range gate is initially placed over the ship by the platform that launches the
ASCM. To ensure that the chaff cloud is initially in the range gate, we select launch parameters

that ensure it to bloom at the same distance from the ASCM as the ship. As in the previous case,
the range gate will then alternate between positions based on the ship and the chaff, usually in a
position based on the ship, until separation A in Fig. 5 is reached. SAM director illumination during
this period simply serves to reduce the time spent tracking the chaff because during illumination
the position of the range gate will be based on the SAM director signal.

Between separations A and B, SAM director illumination still results in capture of the range
gate by the SAM director. When the illumination terminates, the range gate shifts to the ship, and
capture of the range gate by the chaff becomes possible. Between separations B and C, capture of

7
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the range gate by the chaff remains possible, but the SAM director is no longer able to recapture
it. In this region, if the range gate is tracking the ship, it moves slightly to track the SAM director.
If, however, it is tracking the chaff, it remains on the chaff. So SAM director illumination during
this period simply serves to lock the range gate in its present position.

Summarizing, if the chaff captures the range gate after the last SAM director illumination
between separations A and B, a successful seduction is assured. The probability of such a capture
by the chaff depends upon the pattern of illumination between the time of that last illumination
and the time separation C is reached. A complete dlescriptiorl of an illumination pattern requires
specifying whether the SAM director is illumninating the ASCM at each tine step in this period.
Fortunately, the minimum duration of a SAM flight restricts the set of fe.asible illumination patterns
to those that contain a small number of contiguous periods of illuimimation. The maximum number
of separate no illumination periods depen(ls on the length of the period between separations B and
C, the minimum range of the SAM system, and tlie speed of' the SAM.

Further simplification results from a time invariance that is a conse(qluence of ranldiom fading.
First consider the class of illumination patterns with a single no illumination period of fixed dura-
tion. Since we can not readily control when the ASCM will observe a fade by the ship, we make an
a priori estimate for the probability that a fade by the ship will occur during the no illumination
period that is sufficiently deep to cause a range gate transition. This probability estimate depends
upon a specific set of conditions that includes sea state, ship headlin-, andi ship speedi. The fades
are a direct result of ship motion, which is a narrow handl randlom process. For simplicity, we
assume here that for any time chosen at random, the next fade is equally likely to occur at any
time within an interval roughly corresponding to a fundamental period of tha-t narrowband process.
Since we assume the phase of the fading patterns to be uniformly distributed, we hypothesize that
the probability will be the same regardless of when the no illumination period begins. We call the
duration of this single quiescent period D. At the beginning of the period the ASCM tracks the
ship, having just shifted there from the SAM director. As D increases, the cumulative probability
of a sufficiently deep fade by the ship increases as well.

Once separation C is reached, the outcome of the seduction attempt is completely determined.
We define the time at which separation C is reached as our reference time tR and define the D(t)
to be the unilluminated time that has been accumulated by time t. The probability of seduction is
thus a function of the duration of the no illumination period at the reference time

Ps: D(tR) Pr{Successf'ul seduction at time tzi; D(IR) }. (1)

We could construct a similar function for more complex illumination patterns as well. Doing so
would improve the fidelity of our model by identifying the effect of teinporal correlations within the
possible fading patterns. We believe, however, that we can bound the performance of the chaff with
Eq. (1). Because the probability is computed by averaging over every phase of every possible fading
pattern, the Ps function provides an upper bound on the seduction probability, when it is applied
to the total no illumination time and a lower bound on the sedlction probability when applied
to the duration of the longest no illumination period. Since either bound reflects the interaction
between chaff and SAM employment and the argument for the upper bound is easier to compute,
we use the total no illumination time as the domain of Ps(.) instead of developing a more complex
chaff effectiveness model.

The computation of D is then quite straightforward. If there is SAM director illumination
between separations A and B, we begin counting D from zero at the end of the last such illumination.
When there is no such illumination, we can begin counting D from zero when separation A is
reached without significantly changing our analysis, because the ASCAMI is very likely to be tracking
the ship at that time. If there is SAM director illumination between separations B and C, we stop
incrementing D when it begins and resume counting when it ends.

8 Oard, Wolk, and Ephremides
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2.5 Measurement of Chaff Effectiveness

If D(tR) = 0 the continuous illumination prevents a successful seduction (Ps = 0). To quantify
the remainder of the dependence of Ps on D we simulated a series of experiments by using the
CRUISE Missiles testbed. Figure 6 shows the geometry we used. This geometry results in sufficient
range and cross-range separation between the chaff and the ship to allow a sedluct ion. and it exploits
the leading edge bias of the tracker by assigning the ship a velocity cotmaponemnt away from the
ASCM. No wind or current was applied, and unaccelerated ship motion was assumed. Because the
maximum range of the SAM system against low altitude ASCMs depends on the elevation of the
SAM director, the SAM director is normally placed high on the superstructure near the middle
of the ship. For this reason we placed the SAM director 35 m directly above the ship's center of
gravity.

20 km

300 m/s _

Stationary
Chaff

Fig. 6 - Monte Carlo simulation initial conditions

The ordinate of the graph in Fig. 7 shows the empirical probability of seduction that resulted
from continuous illumination from the beginning of the run until the separation plotted on the
abscissa was reached and then no further illumination until the ASCM reached the inner zone. The
measure of separation that we have chosen is the range separation between the ship's center of
gravity and the geometric center of the chaff along the ASCM-to-chaff line of sight. We calculated
this empirical probability by conducting a set of simulation runs and observing whether the ASCM
was tracking the ship or the chaff at the end of each run. In each trial we independently selected
a pseudorandom seed for the ship and sea motion components of the model. This results in trial
outcomes that are independent and identically distributed. Under this condition, the empirical
probability approaches the parameter of the underlying binomial distribution as the number of
runs increases. A sufficient number of runs were conducted to achieve a 0.9 confidence that the
true seduction probability lies within a ±0.1 confidence interval of the plotted value. Data points
are plotted at approximately 25 m intervals.

Examination of Fig. 7 reveals that continuous illumination past 375 m of range separation
always prevents a successful seduction. Therefore, 375 m in this geometry corresponds to separation
C in Fig. 5. The time without illumination (D) before separation C is reached is plotted on the
top of the graph. The data show a nearly linear increase in seduction probability with an increase
in D. The limiting probability of seduction (in this case 1.0) depends on the relation between the
signal from the chaff and the signal from of the ship at the deepest point of a fade by the ship for
this geometry. We call this limiting value Pmax. The time without illumination that is required to
achieve this limiting seduction probability depends on the frequency with which fades occur, which
is determined by the ship motion and the sea motion in the simulation. We call the smallest value
of D(tR) that maximizes the probability of a successful seduction Dmax.
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Fig. 7- Typical seduction probability function

Separation B in Fig. 5 can be found by determining the position of the range gate when it is
tracking the chaff and then by computing the minimum range separation necessary to place all the
energy from the SAM director outside of the range gate. In our low-resolution ASCM seeker we
use a 2 ps range gate because we have a 1 ps pulse width and a matched filter. When the leading
edge tracker is tracking the chaff, the trailing edge of the range gate is located approximately 0.63
,us beyond the geometric center of the chaff cloud in signal space. The geometric center of the chaff
cloud in signal space corresponds to the center of the chaff's flat spot in Fig. 5. When coupled with
the 1 ps matched filter, a 1.63 /is round-trip transit time difference between the geometric center
of the chaff and the location of the SAM director (the pealk of the SAM director signal in Fig.
5) is sufficient to prevent the signal returned by the SAM director from influencing the tracker's
behavior. For simplicity we have placed the SAM director directly over the ship's center of gravity.
Thus, separation B is 245 m for this geometry. Note that we have implicitly assumed that the
bias in the range gate is sufficient to prevent the signals reflected by closer parts of the ship from
significantly affecting the leading edge tracker's behavior in this case.

Determination of separation A in Fig. 5 requires an additional experiment. We began by cre-
ating a single no illumination period of duration DI 0., that ends when separation C is reachedi.
We then shifted the no illumination period earlier in time while maintaining a duration of Dnoz
until the period barely lasted past separation B. If a reduction in seduction probability had been
noted, the smallest separation that avoids the reduction would be separation A. However, no such
reduction occurred. From this we conclude that separation A is less than 155 m (the smallest sepa-
ration attempted) for this geometry. In that case the precise value of separation A is insignificant,
because a lack of illumination between the actual value of separation A and separation B would
have the same effect as a lack of illuminiation between a sepcaration of 1155 mn and separation B.
Therefore, we can consider separation A to be 155 mi. Although this ch-oic((e couldi resuli in a failure
to count D between the actual value of separation A and a separation of 155 ni, the resulting
seduction probability would be unaffected because either the seduction probability would alreadly
be maximized or an intervening illumaination would reset D.

We found similar seduction probability functions for other initial geometries as well. Variations
in ship velocity produced the expected compression or expansion of the time axis. Slight shifts
in separations A and C were also observed. This occurs because the tracker is affected by the
range extent of the ship along the ASCM/-to-ship line of sight, which varies with the ship's heading.
Some ship headings also result in larger or smaller signal returns from the ship, w\,hich changes the
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effectiveness of the chaff. When present, this effect results in compression or expansion along the
seduction probability axis. The value of Pmaa, is easily found by conducting a single set of runs
with no illumination. Changing the initial position of the chaff cloud slightly did not affect the
outcome of our experiments. In particular, initial range separations between 0 and 270 m resulted
in truncated versions of Fig. 7, and similar initial cross-range separations had no significant effect.
Varying the position of the ASCM in the middle zone had no significant effect, because the period
between multipath fades is nearly constant, while the ASCM is in the middle zone.

2.6 SAM System Effectiveness Model

The position of the chaff cloud can influence the performance of the SAM system. If the chaff
cloud is placed directly between the ship and the ASCM at a low altitude (near the end of its life),
it could prevent the SAM direct illumination from reaching the ASCM. This would result in loss
of SAM guidance and require destruction of the SAM before it reaches the ASCM. This situation
can be avoided by choosing a chaff bloom position that places it astern of the ship-to-ASCM line
of sight before its altitude decays enough to cause a problem. Since that tactic is compatible
with the requirements for optimal chaff effectiveness, we shall adopt it and consider SAM system
effectiveness in isolation.

Because our focus is on the SAM/chaff interaction, we have chosen the simplest possible model
for SAM system effectiveness. We model the effect of a SAM, intercept with a constant PK that
represents the probability that a SAM intercepting an ASCM in the middle zone will destroy it.
The parameter PK can be chosen based on simulation results or operational experience. If an
ASCM is intercepted but not destroyed, it can later be intercepted again by another SAM. By
choosing PK to be constant, we are treating each intercept as an independent event.

3 ENGAGEMENT MODEL

Although the individual effectiveness models are adequate to determine the distribution on the
outcome of a single event, the integration of these into a unified whole remains to be done. We are
interested in the effectiveness of several applications of the SAM and chaff systems in defending
against an attack by multiple ASCMs. We restrict our analysis to the case in which all the ASCMs
arrive from the same direction, and each travels with approximately the same velocity, because by
doing so we simplify the engagement model while preserving the interaction we wish to study. We
chose the arrival angle shown in Fig. 6, because it accommodates the requirements of our tactics.
Since Fig. 7 indicates that the seduction probability is closely approximated by a negative-going
ramp function, we have used that approximation to construct an idealized Ps function defined as

Dmax - min{D, Dmax} (2)

Inspection of Fig. 7 suggests that a reasonable value for D,,lazb is 8. The interaction we wish
to study is only present when Pmax assumes a moderate value. If high assurance of a successful
seduction were possible, SAM employment is not necessary. On the other hand, a low value for
Pnaf keeps seduction from being worth considering. Thus, the interaction we wish to study is only
significant when Pmax assumes a moderate value. For this reason we have chosen to assign Pmax a
value of 0.5. Similar considerations dictate the choice of a moderate value for Pl. Therefore, we
have somewhat arbitrarily assigned PK = 0.3.

In developing a model for this multiple ASCM problem, which we will call the "engagement
model," we must examine the effect that a single application of each defensive system has on
different ASCMs. Because it is extremely unlikely that two ASCMs would be so close to each other
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that both could be destroyed by the same SAM, we will ignore that case. Hence, each SAM can
affect at most one ASCM. A single chaff cloud cotuldi, however, affect every ASCM in the rniddlle
zone. Each ASCM arriving from a given direction will observe the same range separation between
the chaff and the ship at the same time. Since we halve restricted our at) (e tion t(o the case in which
all ASCMs arrive from the same direction, ever, AS(C'M in the mlddl( zone will experience each
seduction attempt simultaneously.

The fading on which seduction depends is causedi by nailtil.l prolpigatioll anId by ciliaiges
in the ship's orientation. Multipath fading occurs when the lengthl of two raypaths differ by a
half-wavelength (modulo the wavelength). The dominant miltii path interference occurs between
the direct raypath and the raypath reflected once off the sea surface. ASCN4s with the same path
length difference (modulo the wavelength) will observe synchronized fading, while for other ASCMs
the observed multipath fades will occur at different times. Fading due to changes in the ship's
orientation occurs when many of the normally dominant scatterers are viewed from an orientation
in which their reflectivity is low. All ASCO~s arriving from the same direction should observe
synchronized orientation-based fading. Although it should be possible to construct an accurate
model of the relationship between the fading observed by multiple ASCMs, we have chosen to treat
simultaneous seduction attempts as mutually independent events. This choice allows us to specify
state variable transition probabilities individually rather than in all possible combinations, thereby
reducing the complexity of the model.

The high speed of each ASCM and the limited number of ASCMs that an adversary could
reasonably use naturally leads to a finite time horizon formulation. To facilitate computational
solution, we have chosen a discrete time specification for our engagement model. To simplify
the formal specification of the model we will assume that all moving objects travel at a constant
velocity. This assumption allows us to express distances as time periodls, eliminating unnecessary
unit conversions.

3.1 States and Controls

Table 1 shows the state variables for the engagement model. We use the index i to distinguish
between similar state variables that refer to different ASCMs and allow i to range from 1 to In,

where m represents the maximum number of ASCN~s that may arrive. Each state variable is
discussed in detail below. Wel refer to the entire collection of state variables at tinie t as the "state"
at time t, Xt. Note that while we use a subscript i on a state variable to indicate the associated
ASCM, we use the subscript t on the state (and later on the control functlioin) to represent time.
We have included enough information in the state to construct a controlled one-stel) niiarkov model,
which is required for one of the optimization techniques that we will consider.

Table 1: State variables

Ai Time until ASCM i reaches the ship (s)
C Time until chaff enters seduction region (s)
D Time since SAM director status change (s)
N Number of remaining SAMs
S Time until SAM intercepts closest ASCM (s)
Ti Whether ASCM i is tracking the ship (True or False)

12
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We sample state transitions once each A seconds, with the first transition beginning at time
0 and the last at time r - A. Because the next state may depend on the outcome of one or
more random events (ASCM detection, SAM intercept, or seduction attempt), the transition from
the present state to the next state will, in general, be stochastic. Figure 8 specifies the allowed
transitions for each state variable. Each arc is labeled with the condition under which that arc
may be taken. When the transition is not deterministic, the probability the transition occurs is
separated from the condition by a comma.

C0 c~oo

_ Otherwise C-A

No0

Otherwise 4L = True i)

-00\ ~~L= True r

(sj Otherwisei,)

0 (C > CA) V ((CB < C• CA)A(S 0))

Otherwise D (C•CA)A(S<0)

A;> TM, XPA(n,t)
oo / ~~~~~~~n3Ai nIvM I

X~~~~~0 A (i '- mint'A <~ 0:5 Aj .5 T

Otherwise 

Ti: Otherwise ATM)A (C =0), Ps(D) FseAlways

Fig. 8- State variable transition diagrams

We will restrict our attention to ASCM arrival distributions that depend only on time and
the number of ASCMs that have already been detected. We will use the information about the
number of previously detected ASCMs to limit the attacker to m ASCMs. This is a relatively
simple formulation that reflects both the attacker's lack of detailed knowledge of the defender's
state and the defender's uncertainty about the attacker's strategy while producing a controlled
one-step markov model. Therefore, we take as given:

PA(n, t, a)

= Pr{n ASCMs will arrive at time t given that a ASCMs have already arrived}. (3)

Because a relatively large range separation is required between chaff clouds if separate seduction
attempts are to occur, relatively few seduction opportunities can be created for each ASCM. We
have chosen to repeatedly fire chaff rounds at the minimun effective interval to maximize the
chance of a successful seduction. This decision reduces the complexity of the control policy we seek
without eliminating our ability to observe the effects of the SAM/chaff interaction.

Accordingly, the ship has available one control L(t). Setting L(t) to True represents the launch
of a SAM at time t. Setting L(t) to False represents foregoing the opportunity for a launch at

13
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that time. L(t) is constrained to be False if a SAM is already in flight or if the SAM inventory
is exhausted. We make it possible to enforce an inventory constraint by defining N to be the
number of SAMs remaining. Initially we set N to No, the number of SAMs that are available at
the beginning of the engagement.

The periodic nature of chaff deployment is represented by a counter C that represents the time
until the next chaff cloud will next be properly positioned for a seduction attempt. C initially has
a value Co, which represents the phase of the periodic chaff replacement. Subsequently, C counts
down modulo C0 raz + A.

We use Ai to represent time remaining before ASCMTS i reaches the inner zone. Ai is initially
set to oo, which represents a remaining time greater than TAi. As long as ASCM i is outside the
middle zone there is a chance that it will arrive at the outer boundary of that zone and be detected.
There will be n arrivals at time t with probability PA (n, t). By convention we assume that ASCMs
are numbered in the order of their arrival. Therefore, ASCM i arrives at time t if there are more
arrivals at time t than there are locver numbered ASCMs that have not yet arrived. When ASCM
i is detected, Ai is set to TMj. Ai subsequently decrements until ASCM i reaches the inner zone or
is destroyed by a SAM intercept. For ASCMs, which reach the inner zone, we allow the value of
Ai to continue to decrement below zero and interpret negative values of Ai to represent ASCMs
that are no longer in the middle zone. If ASCM i is the closest ASCIN] in the mid(ldle zone (i.e., i is
the smallest j for which 0 < Aj < TMI) and it is destroyed by a SANM intercept, we set Ai to ,
representing an ASCM that will never reach the inner zone (andi thus never hit the ship).

Intercepts occur when the most recently launched SAN'I reaches the closest ASCMNI in the middle
zone. We assume the SAM and ASCM both move wxith constant velocity and define Vs to be the
ratio of the velocity of the SAM to the velocity of the ASCM. The distance between the SAM
and the ASCM will decrement at Vs + 1 times the rate at which Ai is decrementing. At time t,
min{Ai(t) : 0 < Ai(t) < TM} + Tj more seconds would be required for the closest ASCM in the
middle zone to reach the ship. If we divide these two quantities and adljust the result to be an
integer multiple of A, then at the time the SAM is la'-unchedi we caln calculate the time at which
the intercept will occur tj as

1miri fAi (t)} -+ Tj I1
ti(t) = t + s -- TV A A. (4)

The state variable S is used to carry this information fborward from the SAM launch time to the
time of the intercept. Initially S is set to -oo, owhere we interpret negative valhes of S to represent
a state with no airborne SAM. When a SAM is launched, S is reset to the calculated intercept time
tj. Subsequently, S decrements to zero, at vhich time an intercept. is recognized. Since at most
one SAM can be in flight at a time, a scalar value suffices to represent this information.

The illumination duration D remains zero until sepalation A is reached, which occurs when
C = CA. Subsequently, D is incremented by A whenever there is no Airl!)omne SANI4 and reset to
zero when there is an airborne SANMT. Once C reaches separation B3, which occurs when C = CB, D
continues to increment when there is no airborne SAM but holds its value when a SAM is airborne.

The Boolean state variable Ti whether ASCM i is trackinig the ship. Initically Ti is True Vi
because all newly detected ASCMs are assumed to be tracking the ship. Seduction attempts occur
when C = 0, and they can be effective against any ASCM in the middle zone (i.e., any ASCM i for
which 0 < Ai < TM). At each seduction attempt T. will become False if the seduction attempt is
successful.

We have collected all of the parameters of the engagem-ient rrnodel in Table 2 and indicated
typical values for a simple instance of the model. While these prameters are often somewhat
arbitrary, the entire set of parameters must be chosen in a consistent mariner. For instance, TAI

must be some multiple of A so that it will be possible for Ai to relach zero.
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Table 2: Engagement Model Parameters

3.2 Observations

The value of most of the state variables can be observed or deduced without error at each time.
Figure 8 identifies the initial value for each state variable using a small arrow. Since C has a known
initial value and it evolves deterministically, C(t) is known a priori for all t, regardless of the policy
selected. The evolution of N is completely determined by the control L(t), which becomes known
as it is chosen at each time. So N(t) becomes known by time t.

Although Ai evolves stochastically, its value can be observed at each time. Because the velocity
of an ASCM is nearly constant, Ai is directly proportional to the distance between the ASCM and
the ship. Thus, Ai (t) can be observed at time t without significant error by using surveillance
radar equipment. Since {Ai (t)}' is known in this way at time t and L(t) is also known at time t,
S(t) can be calculated by using Eq. (4) at time t. And finally, once S(t) and C(t) are known, D(t)
can be calculated.

As long as no seduction has been attempted against ASCM i, Ti evolves deterministically and
its value can be computed. Once a stochastic state transition occurs, however, this is no longer
possible. Furthermore, it is impractical to observe Ti while ASCM i is in the middle zone. Ti(t)
again becomes known with certainty only after ASCM i enters the inner zone and reaches either
the ship or the chaff cloud.

We will refer to the known state variables at time t as the observation at time t, Ot and define
a function 0 : Xt '-4 Ot. Ot consists of every state variable in Xt except Ti(t) for those ASCMs
that were in the middle zone during a prior seduction attempt and have not yet reached either the
ship or the chaff.

3.3 Reward Function

We assume that a single hit by an ASCM is sufficient to disable the ship for the remainder of
the engagement. For small ships such as frigates and destroyers this is a reasonable assumption.
Therefore, we wish to find a policy that will maximize the probability that no ASCMs will hit the
ship between time 0 and time r.

Parameter Value Units Description
A 1 seconds Time quantum
1r 147 seconds Final time
TM 48 seconds ASCM flight time in the middle zone
Iri 12 seconds ASCM flight time in the inner zone
Co 30 seconds Time of first seduction attempt
CA 15 seconds Value of C for separation A
CB 8 seconds Value of C for separation B
Cm1a 19 seconds Maximum time until the next seduction attempt
Dmax 8 seconds Maximum no-illumination duration
m 3 ASCMs Maximum number of ASCMs which may arrive
No 5 SAMs Initial SAM inventory
PK 0.3 Probability that a SAM will kill an ASCM
P11.X 0.5 Maximum seduction probability
Vs 3 ASCM Speed Relative speed of a SAM
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By a policy we mean a set of functions indlexed' by tiie, t le ranlnge of each being the control to
be applied at that time. In general. we would like io 1ba se oiii (colitl (flel isionls on all of the nisefill
information available at each time. If we were to choose X! as tlie doioaiin lor the (olntrol function
at time t we would obtain a one-step markov m1od(1el. Flrttl(ellnFoe, siiiCe Xi caltIlres all of the
relevant information about prior states and controls that is rncessalry to deter-lilile the next state,
adding prior state and control information to the domclin of the control function would not change
the optimal value of the reward function. Unfortunately, it is sometimes impossible to observe part
of Xt. When part of Xt cannot be observed, a control function that requires all of Xt as its domain
would not be useful to a defender.

Another obvious choice for the domain of the control lfuction at time t is Ot, the observation
at time t. Since Ot C Xt, this choice would yield a one-step markov model using a control function
that could be used directly by the defender. In this case, however, adding prior observations to the
domain of the control function could potentially iniprove the optimnal value of the reward function.
In addition, our knowledge of system dNvnai-nics also makes it useful to include the prior controls
we have applied in the domain of the control function. To qllantify this dependence we define the
information vector at time t to be

lo = °°
It = {Oo,...,t:,L(0),...,L(t-A)}, (tc {A,...,r-A}).

The policy we seek is a set of functions 7r = f/t: It, L(t)}j-A. We wish to find the policy 7
that maximizes the probability that the ship is not hit when that policy is employed. Therefore,
we choose as our reward function

J, _-Pr{Ship not llit; ir}

In this notation we have explicitly identified both the event ({ Shlip) iiOt hit }) and the parameter
(7-) that determines the probability of that event. We shall use this niotation extensively to call
attention to the functional dependence of a distribution on certain parameters.

4 OPTIMAL SCHEDULING TECHNIQUES

We seek to find an optimal policy lr* for which

J,* = max{JP4.
7-

We shall present two techniques for finding an optimal policy, exhaustive search and dynamic
programming.

4.1 Exhaustive Search

Exhaustive search is a brute-force strategy that can be efficient when the number of alternatives
that must be considered is small. In the exhaustive search strategy we first compute the value of
J, for every possible policy 7 and then choose the policy that maximizes that value. We begin by
developing an algorithm for computing J,. Starting with the definition of the reward function we
apply the law of total probability:

J, = Pr{Shipnothit; T}

= 1-Pr{Ship hit; 7}
= 1 - E Pr{Ship hitjXo,.. ., XT; 7r} Pr{Xo, ... , XT; 7r} (5)

{Xo. - sXT}
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The engagement model described in Fig. 8 specifies Pr{Xt+AlXt, L(t)} and specifies a delta
function for Pr{Xo}. Since L(t) = pt(It), we can use the one-step markov structure of the model
to compute the second probability in Eq. (5):

Tr-A
Pr{Xo,...,XT;7r} = Pr{Xo} I1 Pr{Xt+AIXt.t't([t)}. (6)

t=0

Computation of the first probability in Eq. (5) is somewhat more complex. In our analysis
above we determined that the ship will be hit if and only if at least one ASCM reaches the inner
zone without being seduced. That occurs if and only if there exist an ASCM i and time t for which
both Ai (t) = 0 (i.e., at time t ASCM i reaches the inner zone) and Ti (t) = True (i.e., at time t
ASCM i is tracking the ship). This formulation captures the effect of a successful seduction directly
by using Ti but relies on Ai to keep ASCMs that are destroyed by SAMs from being considered.
Using the indicator function l{Event} that has value 1 when the event occurs and 0 when it does
not

Pr{Ship hitiXo, .. . ,XT;7r} = {3(i,t)(Ai(t)=O)A(Ti(t)=-tue)} (7)

Combining Eqs. (5), (6), and (7) and then eliminating zero terms from the summation we get

T-A
=1- Eii 1{l(i,t)(Ai(t)=0)A(Ti(t)=TrLe)} Pr{X0} J7J Pr{Xt+AjXt, Itt(ht)}

{X0 ...,XT} t=o

= 1 - EPr{Xo} fJ Pr{Xt+AjXt,pt(It)}. (8)
{Xo0 . X T}3(it)(Ai(t)=0)A(Ti (t)=True) t-O

Since we can repeatedly apply the definitions of Plt, It, and 0 to find lit(It), given {XO, . . ,Xt

this equation provides a somewhat cumbersome way to compute J7, for any policy 7r. By trying
every policy, we will eventually find the one that maximizes Jh. Examination of Eq. (8) reveals that
this computation will be most efficient when the time horizon is short and the number of possible
state sequences is small. Since the computation is repeated for every policy 7r, practical application
of this technique is only possible when there are few times when more than one alternative is
available.

4.2 Incremental Computation of the Reward Function

The exhaustive search technique requires that every possible path through the state space be
considered. Multiple control alternatives or stochastic state transitions will result in exponen-
tial growth in the number of paths. If we define computational complexity to be the greater of
the asymptotic time or space requirements of an algorithm, the computational complexity of the
exhaustive search technique grows exponentially as the number of time steps is increased.

The controlled one-step markov structure of the engagement model suggests that it may be
useful to view this optimization problem as a multistage decision process and consider incremental
computation of J*. Incremental computation can result in greater efficiency by computing inter-
mediate values for each unique subpath only once. Two approaches to incremental computation
are possible.

Incremental computation forward in time is done by walking a decision tree to find the optimal
policy and considering several branches at each step in which a stochastic state transition occurs.
Only reachable states are considered when walking a decision tree. As the number of reachable
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states becomes large, however, a tree walk will consider maniy of these states more than once. This
requires either repeating the computation each time a state is considered or storing the previous
result. If recomputation is chosen, the computational complexity of a tree walk grows exponentially
as the number of time steps is increased. When intermediate results are stored, a large interme-
diate storage area that grows as the number of tim-ie steps is increased will be required; however,
computational complexity will grow linearly with the number of time steps.

Incremental computation backward in time is done by constructing a state lattice backward
from each possible final state. The algorithm for incremental computation backward in time is
known as dynamic programming. Because every state is considered only once at each time, the
computational complexity of a dynamic programming solution grows linearly as the number of time
steps is increased. Although dynamic programming requires interme(diate storage for one value for
each state, the required storage area does not change as the numnber of time steps is increased. For
that reason, we will next apply the dynamic programming algorithirl to this problemn.

4.3 Dynamic Programming

In dynamic programming we seek to reduce the problem of selecting the optimal policy to a
sequential selection of optimal control functions for each time. The dynamnic programming algorithm
works by associating with every state at time t a value that represents the expected reward that
would be earned if we started in that state at time t and employed an optimal policy between time
t and time T. This set of optimum expected rewards can then be used to compute the optimum
expected reward associated with any state at time t - A, if the incremental effect of each possible
control that could be applied from that state at time t - A is known.

Conventional dynamic programming is valid for a reward function fori-med as the expectation of
a sum of partial rewards. Appendix A describes a similar algorithim for a reward function that is
the expectation of a product of partial rewards. Appendix A identifies five propelties that a model
must possess before that dynamic programming algorithm can be applied:

(a) A finite set of states

(b) A control function with the state as its domain

(c) A controlled one-step markov model in which the distribution on the next state is determhin-ecd
by the present state and the present control.

(d) A set of nonnegative partial rewards functions, each of which has the state at one time as its
domain.

(e) A reward function that is the expectation over the state sequence of a product over time of
those partial rewards.

4.3.1 Computation of the Reward Function Using the Information Vector

Because we do not have perfect knowledge of the state at each time, we must use the information
vector It as the domain of control function at time t. To satisfy l)ropelty (b) we must treat It, as
if it were a state in our development of a dynamic programmning solution. That choice satisfies
property (a) because It is a finite union of finite sets.

Property (c) then requires that Itch be a known stochastic function (called the next state
function) of It and Itt(It). We will show the existence of a next state function for It by briefly
sketching its derivation. We begin by applying the definition of It to the next state function
from property (c) in Appendix A and then simplify the resulting expression, thus observing that
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L(t) = pt(ht)

Pr{I t+A IIt; ut (It)} I
= Pr{Oo, . . . , Ot, Ot+Ax L(0), . . . , L(t - A), L(t) OoX . . . , Ot, L(0),...,L(t - A); pt(It)} ;,

= Pr{Ot+AlOo, . ,Ot, L(0),. . ., L(t - A); L(t)}. (9)

Now recall that each Yt+A is associated with exactly one Ot+A. So 0 partitions the state
space. We can therefore express the value in Eq. (9) as a sum of probabilities, then apply the law of
total probability and simplify the result by using the one-step rnarkov property of the engagement
model:

Pr{It+A It; pt(It) }

= E Pr{Xt+AJOo, ... , Ot, L(0),..., L(t - A); L(t)}
Xt+Aot+A=O(Xt+A)

Xt+A3Ot+A=O(Xt+A) {Xo, f .Xt}3{oow bOt1=27({JXO.. s-tl)

Pr{Xt+AIXO,. . ,Xt, Oo,..., Ot, L(0), . . ., L(t - A); L(t)}
Pr{Xo, .. ., XtJOO, .. ., Ot, L(0), ... , L(t - A); L(t)}

Xt+A3Ot+ =O(Xt+A) {xo.. @Xt}3{0o,....Ot>=O({Xo,...,Xt})

Pr{Xt+AjXt; L(t)} Pr{Xo, .. . , XtlOo . . ., Ot, L(0),. L(t - A); L(t)}

{Xo,.,Xt+A}3{Ooot+A}=e)({Soe }SYL+A})

Pr{Xt+AIXt; L(t)} . Pr{Xo, ... ,XtIOo. Ot, L(0),. L(t - A); L(t)}. (10)

The first probability in Eq. (10) is specified in Fig. 8 and the second can be found by first
applying Bayes' theorem, then simplifying the result through the observation that in Eq. (10)
{O,.. .,Or} = Q({Xo, . ,XT}), and finally by using the markov property to write the joint
probability as a product of conditional probabilities

Pr{Xo,. . .,XtJ0o,. .,Ot; 7}
Pr{Xo,...,Xt; 7r} .Pr{Oo,..., OtIXo,..., Xt; 7}

Z{XO,...,Xt}3{Qoo'.Qt}=o(({xo,..Xt}) Pr{Xo, . . ., Xt; 7n} . Pr{Oo, . . .X, Ojo, . .. , Xt; 7r}
Pr{Xo,. . .,Xt; 7r}

IXo,--,xt}D......Ot}=O({XO_.X}) Pr{Xo, . . ., Xt.; 7r}

Pr{Xo} .r, IAO Pr{Xt'+AlXt; L(t')}

lx,...,xt}0oo...,~ot}=o({xo.Xxt}) Pr{Xo} .rt-APrfXt,+AJXt,; L(t').}

So the next state function is well defined and property (c) is satisfied. Properties (d) and (e)
require that the reward function be formed as the expectation over the state sequence of a product
over time of nonnegative functions of the state. To put our reward function in this form, we start
with the definition of the reward function and again apply the law of total probability followed by
the definition of expectation to obtain:

Jr = Pr{Ship not hit; 7r}

= 1-Pr{Ship hit; 7rI}

= 1 _ E Pr{O0,... , Or; 7r} Pr{Ship hitlOo,..OT; 7r}
{OO,--OT}

= 1- E [Pr{ShiphitlOo,...,OT;7r};7rJ. (11)
{Oo. --,OT}
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In our notation for expectation, wve place the palairietel on which the distribution depends
inside the brackets after a semicolon. Nowv we can derive an analytic expression for the probability
that the ship is hit by recalling the condition we introduced earlier

Pr{Ship hitjOo,. , OT; in} = Pr{3(it)(Ai(t) = 0) A (Ti(t) --= True)Oo .. OT;r i}
= 1-Pr{V((i, t) E Ai(t) = 0)(Ti(t) = False)IOo , ., OT; 7r}

= 1 - II Pr{Ti(t) = FalselOo, ... , OT;0i
(i't)DAi (t)=O

The last step is based on the mutual independence of Ti(t)Vi at every time t, given the same
control sequence. This independence is a consequence of the known value of Ti(0) and the (assumed)
mutual independence of simultaneous seduction attempts. Substituting our result into Eq. (11) we
get

A = 1- E [1- i Pr(Ti(t) = FalselOo,. ,OT; 7r}; X]
{Coo .... o0} (i't)DAj(t)=O

J-r = E [ 1j Pr{Ti(t) = FalselO(, . OT; 7}; 71. (12)
{Oo,.. ,OT} (i,t)3Ai(t)=O

Since Ti (t) is not known, we must compute its distribution based on the available information.

Pr{Ti(t) = FalseIOo, ... , OT; in}

= 1-Pr{Ti(t) = TrueIOo, ... , OT; 7r}

= 1 - Pr{No successful seduction attempt against ASC M i b:y time tlOo, . . , OT; 7i}.

The relevant seduction attempts for each ASCM/ are those that occur while it is in the middle
zone. From the state transition diagram for T, in Fig. 8, we see that seduction attempts only
occur when 0 < Ai < TM and C = 0. Using this observation, the markov structure of Ti, and the
definition of Ps we proceed as follows

Pr{Ti(t) = False Oo,. . ., OT; r}
1 - Pr{V(t' < t)((C(t') = 0) A (O < Ai(t') < Tvjj))

=> (Failed to seduce ASCM i at t')lO0,.. , OT; in}

= 1 - UI Pr{(Failed to seduce ASCM i at t')10o, ... , OT; 7r}
(t'<t) 3(C(t') =0) A(O<Ai (P )<Trf)

= 1 - fi (1 - Pr{(Seduced AS CM i at t')IOo, ,OT; in})
(t'<t) E(C(t') =0)A(O< Ai (V )<,M)

= 1- JjH (1- Ps(D(t')))- (13)
(tM<t)D(C(t')=O)A(O<Ai(t')<7rM)

Combining Eqs. (12) and (13) and then separating the outer product into products over t and
i we get:

J7'r = E [ ] (1- 1 (1-Ps(D(t')))); 7]
{00, - JOT}l (i't)DAi(t)=0 (t'<t) E(C(t')=O)A(CK Ai (t' )<TA)

T

E [7 1 (1- (1 - Ps(D(t')))); in]. (14)
{Oo ,0 OT} t=O i3Ai(t)=0 (t'<t)D(C(t')=0)A(•<Ai (t')•TA l)

We now observe that the policy in establishes a one-to-one correspondence between the sequence
of observations {Oo,.. ., OT} and the sequence of information vectors Io,...,IT }. Therefore, we
can rewrite Eq. (14) to get an expression in the form required to apply dynamic programming:

20 Oard, Wolk, and Ephremides
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(-)

Jar = E [7i fi (1- II (1- Ps(D(t'))));nr]
{I0.r F} t-=OiDAj(t)=0 (t'<t)3(C(t')=o)A(O<Ad(t')<-M)

- E [97J t- ) (15)
{,..I}t=0

where we define,

gt(It) = fI (1 - fi (1 - Ps(D(t')))) Vt E {0. , T}. (16)
i3)Aj(t)=o (t'<t)E)(C(t')=O)A(O<Ai(t' )<and )

The form of Eq. (15) satisfies property (e). Equation (16) satisfies property (d) because gt(It)

can be computed without reference to states for times later than t. In particular, gt(It) can be
computed solely by reference to C(t'), Ai(t'), and D(t') for t' < t. Furthermore, gt(It) is nonnegative

because it is the probability that every ASCM leaving the middle zone at time t has been seduced,

and probabilities lie in the interval [0,1]. We have therefore demonstrated all five of the properties
required to apply the dynamic programming algorithm in Appendix A. As a result we can compute

Ja as,

VT(TT) = g9-T(I-) (17)

Vt(It) = max{f E [Vt+A(It+A) gt(ht); 1it(It)] (t E {(0T, - A}) (18)

Jer = E [Vo(Io)]

4.3.2 Constraining State Space Growth

As t increases, the cardinality of It grows rapidly. This means that the maximization in the dy-
namic programming algorithm must be performed over functions with rapidly expanding domains.
However, very little of the information in It is actually used each time to compute the reward
function. Using this insight, we will construct a related optimization problem with a state of fixed
cardinality that can be used to find the optimal policy for our original problem.

Examination of Eq. (16) reveals that the partial reward at time t depends on the value of D

for every time an ASCMI leaving the inner zone at time t might have been seduced. By including

this information in our new state, we can construct a one-step markov model without recourse to

an information vector. Equation (13) can be used to interpret the inside product in Eq. (16) as
the probability that Ti is True at time t. We define a function T to compute that inside product
as follows

T(t, It) = (1 - Ps(D(t'))) (19)
(t'<t)D(C(t')=0)A(0<Ai(t')<•rM)

For convenience, we will also define a set of symbols {T ,... , T,- } as

Tt)= f (t, It). (20)

Equation (14) then becomes

7'

J-r E [fi fi (I1- tj(t));in]. (21)
{Oo.07 J} t-OijA,(t)=o

It is possible to compute §i(t) from Ti(t - A), C(t - A), Ai(t - A), and D(t - A) as shown in
Fig. 9. To see why, recall that Ti(t) represents the probability no seduction attempt for ASCM i

� . - . I I. - . - -- n 
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Otherwise I (O<-Ai TM)AT(C = 0

Fig. 9 -Transition diagram for i1

has been successful by time t. Before ASCM i is detected, that probhability is 1. When a seduction
attempt occurs with ASCM i in the middle zone, Tr (t) is ]multipliedl by the probability that the
seduction attempt is unsuccessful. Figure 1 is a transition diagrla-m for IXl

We are now ready to formally define our new model. We begini with the codunterparts to 17,
t( ), and 7r

6t= Ot U U!i (t)

Ot :-4 L(t), (t E {0, .... . - A})

We can replace the o-algebra defined by Ot in Eq. (21) with the finer T-algebrra defined by Ot
to get an expression for the reward function

J7r = E II I| (I1-tB (t));7r]. (22)
{60,...,6-F) t=OiE3Aj(t)=O

Before we can apply the dynamic programming algorithm we must replace 7r with r to satisfy
property (b). Accordingly, we define

T

J* = E [att7 (1 -Ai (t)); -ri (23)
{Oo, ,-T} t=a i3Ai(t)=O

and seek to find

J = laX { J*} .

(24)

We claim that maximizing J* is equivalent to maximizing J, in the sense that for every optimal
policy 7r* there exists an optimal policy ,* such that Jj,. = J,-.. WVe piove this claim in Appendix
B by showing that pt(It) can be chosen to be the samne for every I thata correspolnals to the saie °t
without changing the optimal reward. This means that ill(O°t) -- pt,( T(, It)) is atn optimal control
function for the original optimization problemn.

Now we are ready to show that the same five properties hold for the ne\\r optimization problem.
We will treat Ot as the state. Property A(a) is satisfied because the periodic launch of chaff limits
us to a small number of seduction attempts for each ASCM. Since D takes values from a finite set
and the number of products of functions of D we are performing is finite, Ti takes values from a
finite set. Therefore, Ot is a finite set.

Property A(b) is satisfied because the domain of the control function is the state. Furthermore,
the control policy will be useful to a defender. Since 00 is known, and each T1 (t) is computed in-
crementally based only on information contained in Ot-A, T,(t) becomes known by time t. Because
Ot is also known by time t, we conclude that Ot becomies kIown by time t. So the domain of the
control function is known in real time.

22 Oard, Wolk, and Ephremides
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The transition diagram in Fig. 9 is deterministic, and Fig. 8 can be used to determine the next
state function for Ot without knowledge of the outcome of stochastic transitions of Ti. So property
A(c) is satisfied as well.

To apply the dynamic programming algorithm we define

Pt(Ot) HI ( - Ti(t)) Vt E {O, ...... T}. (25)
i3Ai(t)=O

This allows us to rewrite the reward function in the form required by property (e):

E 1TJ* = E [f 9t(Ot); *I
{Oo,..., 6Or} t=o

This quantity can be computed based only on 6t, and it is nonnegative because it is a probability.
So properties (d) and (e) are satisfied. Since all five properties in Appendix A are satisfied we may

write:

Vr(Or) = §9T(6-) (26)

Vt (0t = max { E [Vt+ A(Ot+A) -t(0t); Att(Ot)]}, (t E {OI . . * * - A}) (27)
{lt(6t)} {5t+A}

= E [Vo(Oo)]. (28)
{6o}

5 DYNAMIC PROGRAMMING IMPLEMENTATION

Three well-known ways have been developed in which dynamic programming equations can be
used to find optimal controls. The equations can be used to develop analytic proofs of optimality,
or they can be used in one of two numerical techniques: policy iteration or value iteration. In the
following paragraphs, each of these approaches are described. Because it is the most straightforward
of the three, we then consider value iteration in detail. Applicability of the other two methods to
this problem is a topic for future research.

Because we have shown that any policy that satisfies Eqs. (26), (27), and (28) is optimal, this set
of equations can be used to test candidate policies for optimality. One way to apply this observation
is to develop a policy through some independent technique and then to attemript to construct an
analytic proof that the control applied for every state at every time is a maximizing control in
Eq. (27). While such an approach is probably only feasible for relatively simple policies, it offers
the possibility of avoiding a computational implementation altogether.

Howard has developed a computationally efficient technique called policy iteration that takes
advantage of the fact that the dynamic programming equation can be used to define a contraction
mapping in policy space [2]. His approach was developed for models with a long-time horizon and
a reward function that is formed as the sum of a set of stage rewards. Beginning with an arbitrary
control function and an arbitrary assignment of rewards for each state, the policy iteration algorithm
iteratively applies Eq. (27) to develop a more nearly optimumr control function and the associated
rewards. Although this "policy iteration" must continue until a fixed point is reached, Howard
reports that the algorithm often converges after just a few iterations.

Howard's policy iteration algorithm computes each succeeding control function by solving a set
of linear equations. For reward functions formed as a product of a set of stage rewardis, such as
we have in our model, it is not clear that a practical analogue to this approach call be developed.
Furthermore, we would expect that reformulation of our model to incorporate a longer time hori-
zon would significantly alter the optimal policy choice. Nonetheless, it may prove worthwhile to



investigate further the application of policy iteration to this class of rewvard fmictions given the
problems that we describe below with implementat iou of the value iteratiomi technillle.

Equations (26), (27), and (28) call also be used directly to calcullae the optimal control for
each state at each time. Conceptually, this apl)lroach is (luite sioaple. Iirsi the results of Eq. (2(6)
are computed and stored for each state. Equatiomi (27) is then alpplie(l to each state, iterating this
operation backwards in time until time 0 is reached. At each timie the optiitlizimig policy fo()r each
state is stored in an array. Finally, the given distribution on the initial state is used to find the
expected reward by applying Eq. (28). This technilue is Imiown as value iteration. In the re]nainnder
of this report we describe the implementation details and the resulltingll coma1plutational complexity
of value iteration dynamic programming.

5.1 State Coding

Because each state must be considered at each time, reducing the cardiliality of the state space
proportionally reduces both time and space requirements. For this reason, redundant informa-
tion should be removed from the state before coding the algorithm. Redundant information is
information that would not affect the value of the rewardl functiomm if it were deleted.

Two types of redundant information exist in our model. The most obvious type is represented
by unreachable states. Certain state variable combinations will never be reached, regardless of
the control policy or the outcome of random events. For example, in the engagement model it is
not possible for a SAM to be in flight (S > 0) when the SAM inventory is at its maximum value
(N = No) since launching a SAM decrements N. Other state variable combinations can occur at
some times, but not at others. For example, since only one SAM can be launched at each time
step, N cannot reach 0 until No time steps have elapsed. So the set of unreachable states varies
with time.

A more subtle type of redundant information is represented by states that can be excluded
without changing the value of the reward function, although the policy that achieves that reward
function may change. We call these states redundant states, because, although they are initially
reachable, the optimization problem can be reformmulatedl in a way that males themr unreach-Ibloe.
Often, more than one policy will result in the same rewar(l. We define policies that result in the
same reward to be equivalent and use this relation to partition thie poliey space into equivalence
classes. By introducing additional constraints on the control function, we may reduce the size of
some of these equivalence classes while increasing the number of unreachable states. As long as one
policy remains in the optimizing equivalence class, the dynamic programming algorithm presented
above will find it.

A simple example may help to clarify this somewhat abstract concept. Consider an instance of
the engagement model with one ASCM that is kInown to arrive at time 0, one SAM (i.e., No) = 1),
and no chaff (i.e., Co > T). Since Ppc is constant, the one SAM couildl be launched at anmy time that
would allow it to reach the ASCM while the ASCI\/I is in the niliddle zone. Every such policy would
result in the same reward in the model we have plresente(l. So every policy with exactly one SAM
launch between time 0 and time T MA - 11 is in the optio-lizing e(qliva--len(e class. Iuitroducing the
constraint (t < T M-vS) - L = Hold reduces the optimtizing equivalence class to a single "Don't
shoot until you see the whites of their eyes" policy and makes every state wraith .S > 0 unreachable
between time 0 and time TrA - s

Because we have not developed a general procedure to recognize redundant states and craft
control constraints that make them unreachable while preserving at least one policy in the opti-
mizing equivalence class, an ad hoc approach has been adopted here. As our example shows, the
choice of constraints and the resulting set of unreachable states depends on the values of the model
parameters (consider how different the result would have been with No = 2). For this reason, we
have chosen not to pursue the issue of redundant states further.
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Unreachable states are more easily recognized and eliminated because no new control constraints
are required. In the engagement model, Ti C Ot until the first seduction attempt occurs with ASCM
i in the middle zone. But knowledge of Ti is never required to find the next state, and it is never
used to compute jt. So we can calculate Ji, by using Eqs. (26), (27), and (28) without ever knowing ;r9
Ti. This means that by simply eliminating Ti from the state (or equivalently forcing it to a fixed
value) will change neither the policy nor the value of the leward function.

Similarly, C can be eliminated from the state because it depends in a known way on time,
regardless of the policy employed. It is included in Fig. 8 simply as a notational convenience. Once
Co, C.ma and t are specified; we can compute C as:

(t < Co) C = Co - t

(t > Co) C = (Co-t) mod Cn,,,,.

The remaining state variables (N, S, D, Ai, and §i) are all influenced by the control policy and
are used in the computation of the reward function. The variables Ai and T4 are used directly to
find it(Ot), while D is used to find Ti, S is used to find D and to find the distribution on Ai, and
N is used to constrain the control function. It is still possible to find combinations of these state
variables that cannot occur, however, as our first example in this section demonstrates.

Since the set of reachable states changes over time, a thorough search for unreachable states
would require extensive analysis. The most general approach to eliminating unreachable states
would be to enumerate the reachable states and map each reachable state to an index in this
enumeration. As was the case for redundant states, however, unreachable states can be difficult to
recognize in advance. We cannot use the dynamic programming algorithm to discover which states
are unreachable because the algorithm proceeds backwards in time. Once we discovered that a state
was unreachable, the work we sought to avoid would already have been done! A tree walk would
discover which states are reachable, but it would also find the optimal policy (at great expense),
obviating the need for dynamic programming. So again we are reduced to an ad hoc approach to
eliminating unreachable states.

Programmers must also balance the potential savings obtained from enicoding the state against
the time and space required by the coding and decoding operations. Unreachable state variable
combinations that have simple specifications in terms of existing state variables are easily ehin-
inated. Those that require complex specifications or computationally expensive transformations
on the state space may not be worth eliminating even if they could be specified. Using this ob-
servation to guide our search, we have found no combinations beyond the example given above
((N = No) ME S = 0) that apply for all possible model parameters.

5.2 Data Structures

The dynamic programming algorithm iteratively uses the expected partial reward for every
state to find the expected partial reward for each state one time step earlier. Because the partial
rewards represent an expected probability of survival, they are real numbers between 0 and 1. So
we will need at least two floating point arrays. No more than two arrays are needed because only
the present partial rewards are required to find the partial reward for each state one time step
earlier. We simply alternate between the two arrays to represent the present time step as we iterate
backwards in time.

If our goal were simply to discover the optimal expected probability of survival, these two arrays
would be sufficient. The dynamic programming algorithm will, however, also identify a policy that
results in this optimal reward. Storing that policy requires an array indexed by both time and
state. Because the launch control is binary valued, a Boolean array will suffice.
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5.3 Algorithm Implementation

While Eqs. (26), (27), and (28) can be used to comupute the optimial policy, two simplifications

can reduce the implementation effort. If we define 'T+A(OT±A)T+z\) = 1 VO-r+,, Eq. (26) becomes

a special case of Eq. (27). Unnecessary computations arc easily avoided by cl oosi- g al arrival

distribution with no arrivals at time T and adoptimg a constraint that prevents SAM launches at

time r. Since 00 is known, Eq. (28) can be replaced with J*.. = V0(Oo). So all ve must compute

is:

t(Ot) = max { E [[t+A(6t+A) ;(MN) fit(Oi)}, (t C {O. , .-. T}). (29)
{i ±(tO6} {ct+A}

To compute this quantity, we must find the distribution orm the next state given the present

state and the control. At each time, Eq. (3) can be used to compute the probability of detecting

any particular number of ASCMs for each state. Figure 8 can also be used for each state to find the

probability that a SAM will kill the closest ASCM. Because we have modeled these as independent

events, we can then compute the probability of each possible random outcome. For each possible

control the other state variables make deterministic transitions that are specified in Figs. 8 and 9.

Only control values that satisfy the constraints on the launch control need be considered. We do

not allow another SAM to be launched if a SAM is already in flight (S > 0), the SAM inventory is

exhausted (N = 0), or the final time has been reached (t = T). If one of these conditions holds, we

only consider L(t) = False. Otherwise, we choose the conftrol that maximizes Ed1 . (29). Specifically.

we compute:

Vl[statel] max { Z Pr{transitiom from statel to stote2; L[statel] }
{L[statel]} state2

V2[state2] Hi (1 - Ti in statel)} (30)

iDAi=o in statel

where VI is the array of partial rewards at the prior time, V2 is the array of partial rewards at the

present time, and L is the slice of the policy array for the prior timne.
We are now ready to tie up the loose ends and present the algorithm. The time variable t is

initially set to r, and every value in V2 is set to 1. VI[state 11 is then calcullated by using Eq. (30)

for each state 1 at time t and the maximizing L[state 11 (either TRue d)r False) is stored in the policy

array for state 1 at time t. Once VI[state 1] has been computed for every state, V2 is replaced by

VI, t is decremented by A, and the process repeats using Eq. (30). This time VT-A(.) and A()

are computed. The iteration continues until the pass for t=O hats been completed. The value of

Jars can then be read from VI [state 11 for the value of state 1 that corresponds to the known initial

value of 60 . The policy array will contain a specification for a SAM launch policy that would result

in this expected probability of survival.

5.4 Computational Complexity

The dynamic programming algorithm requires that, for each control all of II he states that can

be reached from every state at every time be considlered. Therefore, the num-iber of olperationis that,

must be performed is directly proportional to the numhl)er of controls timies the facnout, from each

state times the number of states times the number of' time steps.
The fanout is the number of states that can be reached from a given state in one time step for

a specified control. Since at most m + 1 ASCMs can arrive simultaneously and states that include

an intercept (i.e., S = 0) could lead to one of two different states for each possible number of

arrivals, the maximum fanout is 2(rn + 1). Most states do not, however, include an intercept and

most restrict the maximum number of arrivals to fewer than m. ASCMs because some ASCMs have

26
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already been detected. For this reason, m+'1 is probably a closer estimate of the average fanout.2
For the parameters in Table 2, an average fanout of approximately 2 would be expected.

The number of states turns out to be very large:

Ai There are Tm +
3 useful values for each Ai. Those values are {-oC), A, 1,... , oo}. Other

positive numbers do not occur. All negative numbers can be mapped to -co because doing

so preserves the effect of Ai on each branch of every transition diagram in Figs. 8 and
9. Since there are m ASCMs, there are (m(TX+3))m possible values for {Am, .. ., Am}. The
parameters in Table 2 result in 51 possible values for each Ai, or 1.3 x 105 possible values for
{A,,..., Am}.

D There are -D + 1 useful values for D. Those values are {0, A, ... , Dma,. Negative numbersA
do not occur. Other positive numbers can be mapped to D-na, because the definition of
D,.. ensures that (D > Dma,) => Ps(D) = Ps(Dma,,x). The parameters in Table 2 result in
9 possible values for D.

N There are No + 1 possible values for N. They are {0, 1, ... , No}. The parameters in Table 2
result in 6 possible values for N.

S There are L ' U++l ] + 2 useful values for S. These values are {-oo, 0, A,..., LAm+rij" }. Figure

8 shows that the largest possible value for S is t1 (t) - t. Substitution of the maximum possible
value for Ai in Eq. (4) yields A Li4If) J for this value. All negative numbers can be mapped
to -oo because doing so preserves the effect of S on each branch of every transition diagram
in Figs. 8 and 9. The parameters in Table 2 result in 17 possible values for S.

Ti Since there are Td + 1 time steps and Cr-ax + 1 time steps elapse between each seduction. there
can be at most r 'M+A1I seduction attempts. The transition diagram in Fig. 9 shows that

Ti will be multiplied by a function of D (which could assume one of D7nx + 1 values) at
each seduction attempt. Since an unsuccessful seduction attempt (D = 0) results in the same
value as no seduction attempt, D = 0 can be used to represent either situation. Because
multiplication is commutative and associative, there are as miany possible values of Ti as
there are choices (with replacement) of values of D for each seduction attempt. Since there
are m ASCMs, there are at most m times this number of possible values for {To,I. .T. , T}.
This value can be computed as:

AtDZ+1AKDmaz + , A K ~n, Dmaz~ + 1A[(A ~~~~+( A'+ 

[Cma J+ ) C-a+1 -1 /
The parameters in Table 2 result in at most 3 possible seductions and 9 possible values for D
at each seduction attempt, resulting in 129 possible values for Ti, or 2.1 x 106 possible values
for {To, . . . , Tm}.

Multiplying the values for the parameters in Table 2 together, we find there are over 2.6 x 1014
possible states. Since (N = No) = (S = 0), a slight reduction to approximately 2.2 x 1014 states
can be achieved by coding N and S together.

Because the launch control is binary, the maximum number of possible controls is two. The
constraint that precludes a SAM launch when a SAM is already in flight makes the average number
of controls much closer to one, though, because S > 0 in most of the states. Finally, there are
r + 1 possible time steps. For the parameters in Table 2, there are 148 possible time steps.

Combining these results, the dynamic programming algorithm requires retrieval of approxi-
mately 6.5 x 1016 floating point numbers from memory and requires US to perform a proportional
number of arithmetic and logical operations. Even with a 1.0 gigabyte per secondl nmemory band-



width it would take over two months to siml)ly perform ti tie reqiiireu mienmory atccesses. Each of

the tvo floating point partial rewvard arrayy s camtaim pollml220 22() te r iiin m values; toget lb('n

they require about 1800 terabytes of rnamdloni access m1emory w\hen Storedi wvit h single precision.

The policy array consists of approximately 220 trillion lits for each of the 1 48 time steps, and

they require over 4000 terabytes of offline storage durinig the comnlputationm aImd an equal amolunt of

random access memory during policy employment.
The strength of value iteration dynamic poga ramm ning is that it provides an exact global solution

for combinatorial optimization problems without resorting to exhaustive search. For the model w e

have developed above, the computational complexity of using dynamic programming in this way is

obviously well beyond the capability of existing computer systems. In the following discussion we

will describe two alternative approaches for resolving this dilem ma. First we consider the potential

for restricting our model in ways that wi result in improved implementation efficiency. Since it

remains an open question whether the approaches we describe belowv retain sufficient fidelity to

allow application of value iteration dynamic programuming to practical problems, we conclude with

a brief discussion of potential for developing heuristic optimization techniques for these problems.

5.5 Reducing Computational Complexity

The four factors contributing to the complexity of the dynamic programming algorithm are

the number of states, the number of available controls in each state, the fanout from each state,

and the number of time steps. There is little point to further constraining the number of available

controls in each state because only one possible control exists in most of the states and no more

than two controls are possible in any state in our model. However, we can gain significantly by

reducing the number of time steps. The number of time steps can be reduced by increasing A

or by introducing an assumption such as clustered arrivals that would allow 7 to be decreased.

Furthermore, increasing A would significantly reduce the number of states and clustered arrivals,

and would also reduce fanout. Thus we begin by considering changes that reduce the number of

time steps and then discuss other assumptions that could be introduced to reduce the state space

still further.

5.5.1 Time Step Reduction

The value of A in Table 2 results in a separation between values of /) that is appropriate to the

accuracy with which data for Ps(D) was collected. Increasing A results in coarser coding for D,

leading to a less accurate estimate of seduction effectiveness. This decreased accuracy could lead

to a overdependence or underdependence on the chaff, depending on the type of error introduced.

Thus, a significant increase in A could make the results of the optimization less useful.

In addition to reducing the number of time steps, increasing A also reduces the nutmber of

possible values for every state variable except N. For the parameters in Table 2, the numblher of

possible states decreases with the eighth power of the factor by which A is increased. Doubling A

would reduce the number of possible states by a factor of 256. Coupled with the time step redluction,

the computational complexity is reduced by the ninth power, a factor of 512 for doubling A. This

extreme sensitivity to A places great weight on the choice of the maximum practical value for this

parameter.
The potential improvement resulting from reducing 7 is less dlialnatic. We consider an engage-

ment to begin when the first ASCM is detected. The valte of T in Table 2 is sufficient to find the

optimal policy regardless of the subsequent ASCMI arrival pattern, subject only to the requirement

that every ASCM shares the middle zone with at least one other ASCM for at least one time

instant. It was found by considering the case in which each subsequent ASCM is detected just as

the prior ASCM reaches the inner zone. We have not considered the case of ASCMs that never
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share the middle zone with another ASCM because that case is easily handled by decomposing the
multiple ASCM engagement into a sequence of single ASCM engagements. The optimal policy for
the multiple ASCM engagement could then be found by sequentially finding the optimal policy for
each single ASCM engagement.

Restricting all arrivals to the first few seconds of the engagement would reduce -r by a factor
between 2 and 3. This is a reasonable restriction because clustered arrivals are known to be an
effective attack technique. Restricting ASCM arrival times in this way, times also reduce the
average fanout from around 2 to a value close to 1. Taken together, this approach offers a factor
of 5 improvement in speed and a factor of 2.5 improvement in the number of states.

5.5.2 State Space Reduction

Together, the two approaches to time step reduction could yield a performance improvement of
about three orders of magnitude if, for example, analysis showed that A could safely be doubled.
Even with that speedup, additional improvement would be required before a practical implementa-
tion could be developed. One approach is to simply eliminate the inventory constraint. If enough
SAMs were available to the defender to assure their availability throughout the engagement, the
choice of controls would not depend on the inventory. Thus the state variable N could be deleted
and the SAM launch constraint simplified by eliminating the N > 0 requirement. For the parame-
ters in Table 2, this would reduce the number of state variables by a factor of 6.

A bolder approach would be to arbitrarily reduce the precision with which a state variable is
recorded. While this approach cannot be applied to counting processes such as N, S and Ai, it
offers great promise when applied to Ti. Initial experiments with the parameters shown in Table 2
(with a restriction to clustered arrivals to speed execution) show that approximately 10 evenly
spaced values are sufficient to compute a value for J,* that is accurate to within 0.05 of the value
found when exact values were used. Such coding results in 1,000 possible values for ITo,.. , Tm};
a reduction by a factor of over 2,000 compared to the number of possible values for exact coding.
Unfortunately, the policy found in this way could differ significantly from the optimal policy found
by using exact coding. Additional research is required to understand how quantizing Ti affects the
optimal policy and to find the best quantization algorithm.

In summary, eliminating the inventory constraint and clustering arrivals would reduce the com-
putational complexity by one order of magnitude while retaining the ability to accurately model a
wide range of realistic engagements. By taking these steps and doubling A and quantizing Ti to 10
values, we could achieve a seven order of magnitude improvement over a, model with the parameters
shown in Table 2. This improvement comes at the expense of some loss of accuracy that remains
to be quantified, but it allows a solution to be calculated for a problem with parameters similar to
those in Table 2 without placing impractical demands on computer resources.

6 FUTURE RESEARCH

Practical ship defense systems will require models that incorporate additional dynamics and a
wider range of parameters. In practice, ASCM seeker parameters may not be uniform, and may not
be known a priori. Other defensive systems must be integrated with the two considered here. And
protracted engagements consisting of several waves of ASCMs may have to be addressed. These
requirements would yield larger state spaces and greater fanout, and may require many more time
steps. Even the improvements of the type just described offer no practical hope for dealing with
this sort of computational complexity.
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The simplifying assumptions in Section 5.5 alone will not be adequate for models of this com-
plexity. The principal advantage of the dynamic programming algorithm described in this report
is that it produces an optimal solution without considering the alternatives available in each state
at each time more than once. Its principal limitation is that we must perform the computation for
every state, regardless of whether the state is reachable. This limitation arises because we work
backwards in time in the dynamic programming algorithm, and hence we are unable to recognize
unreachable states during the computation. A forward tree search for the optimal policy avoids
evaluating unreachable states at the cost of greater time or space complexity. To apply dynamic
programming to these more challenging models would require the investigation of other uses of
the dynamic programming equations such as policy iteration and analytic proofs of optimality. If
these techniques do not prove to be feasible, it will be necessary to consider heuristic optimization
techniques.

A number of heuristic techniques that have been applied to similar problems appear to offer some
promise for application to the ship defense problem. SAMUEL is a computer program developed
by the Navy Center for Artificial Intelligence Research that uses a genetic algorithm to develop a
specification for a near-optimal policy [3]. Policies in SAMUEL are specified by a set of rules that
are used to select controls based on observations. The genetic algorithm in SAMUEL adds, deletes,
and changes those rules in an attempt to improve the value of the reward function. Application of
SAMUEL to the ship defense problem would require the creation of a world model that is used by
the simulation module in SAMUEL to evaluate candidate policy specifications.

The effectiveness of the technique used by SAMUEL depends on the suitability of a relatively
small rule set for specification of near-optimal policies. Because we expect to be able to achieve an
optimal dynamic programming implementation for our limited engagement model described above,
evaluation of SAMUEL's performance on that model should be straightforward. Furthermore, we
would hope to gain some insight into the usefulness of policy specification using small rule sets.
Although the policy array is generally far too large for online storage, small rule sets would be
useful in developing online decision aids and tactical guidance for defensive system operators.

. Another technique worth investigating is a limited lookahead forward tree search. Rather than
evaluate every path through the complete state space, the number of time steps to be considered
is sharply limited and a heuristic evaluation of the partial reward is performed for each state when
that limit is reached. By limiting the depth of the tree search we can avoid both consideration
of unreachable states and extensive reconsideration of the same state. This approach is similar to
the technique used by computer chess programs; hoxwever, the introduction of stochastic transitions
could result in some significant differences in the implemenitation of the (doncept.

Selection of an appropriate heuristic for the static evaluation of terminal states is critical to
the performance of the limited look ahead technique. One possible heuristic would be to use the
same reward that SAMUEL would use to evaluate candidate rule sets. SAMUEL determines the
performance of a set of rules from a known starting state by Monte Carlo simulation. To use
SAMUEL's approach for static evaluation of an intermediate state, SAMUEL would first be used
to find a good set of rules, and then SAMUEL's simulation module would be applied to the state
being considered to find the expected performance of that set of rules starting from the specified
state. An advantage of the limited look ahead technique is that it might be possible to apply
it in real time rather than developing a policy off-line. If rules turn out to be poorly suited for
specifying near-optimal policies, real-time policy development may be the only practical alternative.
The availability of an optimal dynamic programming implementation for the engagement model
would also facilitate performance evaluation in this case.

30



On the Integrated Scheduling of Hardkill and Sofikill 31 -:

A third approach that could be useful, if small rule sets are not found to be effective, is to
develop a neural network that could generate near-optimal controls. In one such approach, a
backpropagating neural network could be trained off-line by using an optimal dynamic programming
solution for a limited engagement model and then it could be used in real time to generate the
optimal controls. Werbos has proposed using backpropagation through time to train the world
model of a backpropagating adaptive critic [4].

Finally, Hopfield neural networks offer the possibility of directly developing an optimal policy,
if a short binary specification for a policy could be developed. The rule set developed by SAMUEL
may provide some insight into the development of an appropriate policy representation.

7 CONCLUSION

Because value iteration dynamic programming requires that we work backward in time, we
must consider every combination of state variables at every time. Although we may be able to find
an optimal solution for a small problem using dynamic programming, solving problems based on
larger models requires more computer resources than can practically be provided. For this reason
we are motivated to search for faster techniques. Both heuristic techniques and alternative uses
of the dynamic programming equations bear further investigation. The value iteration dynamic
programming solution we have developed is useful, however, since it can be used to gain insight
into the design of such algorithms and to evaluate the performance of those algorithms in a restricted
domain.
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Appendix A

DYNAMIC PROGRAMMING WITH MULTIPLICATIVE REWARDS

A.1 GIVEN

We are given an initial time 0, a constant time quantum of 1 arbitrary unit, a nonnegative integer
final time T-, random variables {Xo, . . ., XT} taking values {xo, ... .,X } that represent states, a class
of control policies 7r = {,o(.),. . ., Lr-i(r)}, and a reward function J, with the following properties:

(a) Xt e Xt V(t E {0... ., r}), where Xt is a finite set that represents the possible states at
time t.

(b) jt : Xt- U V(t E {O. . .. - 1}), where U is a finite set that represents the available
controls. Furthermore, 1.t(xt) E Ut(xt) V(t E {O. ... . - 1}),V(Xt E Xt), where Ut(xt) is a
finite set that represents the admissible controls at time t if the state is Xt.

(c) The distribution on Xo is given and the distribution on Xt+l is completely determined
by xt and Itt(xt) Vt e {O. ... .r,-1}:

Pr{Xt+l = xt+IlXo = XO,... Xt = xt; co(.), .. ,
= Pr{Xt+i = xt+l IXt xt; pt(xt) }

By, for example, Pr{Xt+i = xt+ IXt = xt; At(xt)} we mean the probability of the event
{Xt+i = Xt+1} conditioned on the event {Xt xt}, given the value of pt(xt) as a
parameter.

(d) At each time t {0. ... .,. }, a nonnegative reward factor g±(xt) that depends only on the
present state xt is computed.

(e) The overall reward is the expectation of the product of the reward factors (and is a
function of the control policy 7r):

7
Jr= E [flgt(Xt)I

{Xo, -X7} t=o

Our goal is to find the maximum reward that can be earned over all admissible policies and a
policy which earns that reward. Formally:

7
= max{ E [flgt(Xt)I}

7r {XO, 'X 7 } t=O

7r* arg max{ B [JJt (XI.)]I
ir {X0,-...,XYT t=O

Where we maximize over ir we mean maximization over ptt(Xt) E Ut(xt), V(t E {0 O . i.-., T-1 }), V(Xt E
Xt).
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A.2 CLAIM

Property (e) defines a reward function with a multiplicative structure. For reward func-
tions with an additive cost structure, the dynamic programming algorithm described by Bertse]kas
in [5] provides a solution technique with a time complexity that is O(T). Here we describe an
analogous algorithm for a multiplicative reward function.

We define a set of functions Vt(xt) as:

VT (XT ) = gT (XT )
Vt(xt) = gt(xt). rax{ F [14±t.+jXt~j)1}, (t E {0,..7T-1

1dt( t) fXt+1}

and then claim we can compute Jr as

il = E [ Vo(Xo).
{Vo }

Furthermore, we define:

itT = 0

At(xt) = argmaxt E [Vt+m(Xt+j)]}, (tE {O,...,T -1)
pt(Xt) {Xt+ 1}

ftt = {ltt(-)} U ,rt+ , (t G {I 0. ... ,T- 1}),

where 0 represents the empty set, and claim that

7r ko.

A.3 PROOF

We begin with the special case of T = 0. Here the result follows directly from the definitions

0

=, max{ E [flgi(Xt)]}
IT {~o0} t=o0

= E [go(Xo)]

= E [Vo(Xo)].

Thus we may focus our attention on the case in which T > 1. We will show by induction on n
thatVn E{0,...,r- }

E [Vo(Xo)] =max ... max{ E [X,+1 (X,7,+1) ' J gt(Xt)].
{Xo} tto() /In(e) {Xox.nX+i} t=O

For the basis case we will take n = 0 and show that

0

E [Vo(Xo)] = max{ E IVI(Xi) . 9tJ(Xt)I
{Xo} °o(') {Xo.X 1 } t=I

= max{ E ]V1(x1) 90G(0)].
/to(-) {Xo, XI}
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Expanding the left side by using the definitions of Vo and expectation, bringing two nonnega- a
tive constants inside a maximization and a summation, and then interchanging maximization and A
summation

E [Vo(Xo)]

= E [go(Xo). max { E [V1(X 1)]}]
{Xo} po(Xo) {X1}

= E Pr{Xo = xo} go(xo) max { E Pr{X1 = xIlXo = xo; [to(xo)} .Vi(x1)}

xoEXo ft°( EX) xEXi

E max{ E Pr{Xi =xllXo =xo;[to(xo)} *Pr{Xo =xo} Vm(xm) go(xo)}
XoEXo pO(xo) - 1 EX1

max{ E E Pr{Xi =xi]Xo =xo;po(xo)} .Pr{Xo =xo} .V 1(xi) go(xo)}
10 ) xoEXo xiEX1

This last step requires some justification. With the maximization inside the summation we are
separately choosing the values of jio(xo) that maximize each term of the summation. Maximizing
outside the summation requires us to simultaneously choose values of [to(*) for every possible value
of xo that maximize the sum. In this case the two operations are equivalent because each choice
of go(xo) affects at most one term of the sum. In particular, property (c) ensures that Pr{Xi =
xiIXo = xo; po(xo)} depends on no other choice of uo(o.) Also note that Vj(x1) does not vary with
lo(xo) because no information for earlier times is used in the construction of Vt. In general, we can
exchange maximization and summation in this way whenever the index of the outer summation
assumes values from the domain of the fumction over which we are maximizing; each term in the
summation depends on the value of the function over which we are maximizing for at most one
element of its domain, and the value of the function for each element in its domain affects at most
one term in the summation.

To complete the proof of the basis case we apply the definitions of conditional probability and
expectation

E [Vo(Xo)]
{xol

= max{ E E Pr{Xi = xi,Xo = xo; Lo(xo)} V1 (xI) go(axo)}
°( ) zxoEXox1EXi

-max B [Vi(xi) -go(xo)]}.
/lo(-) {Xo,Xi}

We now take as our inductive hypothesis for n G {1, . . . -, -1}

n-1
E [Vo(Xo)] = max... max I E [VK(XMO) ]7 gt(Xt)]

{Xo} o( ) Jn1() {XO,..,Xn} t=o

and show that
It

E [Vo(Xo)] =max ... max{ E [Vr,+1(X11±+) HJgt(Xt)I.
1XO} IL0( ) f( XO,.. ,Xn+11 t=O

We begin by separating the expectation on the right side of the inductive hypothesis, bringing
a constant outside the inner expectation, expanding Vn, and bringing two nonnegative constants
inside the inner maximization:
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{xO}
- ma0x.. a { E[)XI.J g(t]n-1 -
= max... max { E [V (X.) ' I| g(Xt)()

f'00' An-1(') {XO'.. Xn} t=O

n-1= max... max { E [ E [VI(X7 ) ' f 9t(Xt)]]}
O - {xn} {XO... ,Xn-}} t=O

l- I

= max ..... max {E [V".(,z) .. ...... E [ n 9qt(Xt)]]}
PoN ) />-10 ) Xn} { XO ... ,X74-1} t=O

= max ... max { E [gn(Xn). max { E [V,2+i(X,2 ±+)1)} E 1 gt(Xt)l]}
P,(O) pn-1(*) {Xn1} p"(Xn) {Xn+l} {Xo0-..X_- 1 } 0t=

n-1
= max ... max { I [max { E [Vn+m(X?7i+-)] .g, 2 (X0 , E 1f gt(Xt)]}1}I

AOH ) l.-10' {Xn} Pn(X.) {Xn+l} {Xo ....-Xn-1} t=o

Now observe that the expectation over X,, is taken on an expression that depends on only one
value of [tn(X,). Viewing the expectation as a weighted sum, the index of the summation assumes
values from the domain of the function over which we are maximizing; each term in the summation
depends on the value of the function over which we are maximizing for at most one element of its
domain, and the value of the function for each element in its domain affects at most one term in
the summation. So we can exchange that expectation with the inner maximization. Doing this and
moving constants inside expectations

11-I

E [Vo(Xo)] = max .max{ E [ E ]l/h+i(Xn+j)I 911(XI1) [I 1 t(Xt)lI}
{xo} pc(') fal() {xn) {Xi} ( Yo, -,XY...... ii I

,-1
= max ... max{ E [ E [V2±+i(X-+1) '9(X 2 ) ' E [Il gt(Xt)ji}I

/,o( ) Pn-0) {Xn} {Xn+I} lXo ... ,Xn_1i t=O
nT-I

= max max{ E [ I [ I [VE+I(X,,+ 1 ) gnl(Xn) 171 gt(Xt)H]}
t0(') Pn(') fXo} 1X.+11 {XO'..'a s i-I t=O

Combining the expectations and the product of the reward factors completes the induction

E [Vo(Xo)] = max max{ E [V¾±+1(X.')* ] t(Xt)]}.
{XO} 120 t(-) P~ (') {,YO ............ . . ............ -.Yt2+1} . .... 9t=(l

Choosing n = 7 - 1 and applying the definitions of V7 and 7r

T-I
E [Vo(Xo)] = max max { E [v 7I(XT) JH gt(Xt)}

{Xo} POH) 7T-1() {XO . .,YT} t=O

T-1
= max{ E 19](X 7 ) * ] 9tg(Xt)]}

{r XO ... --- T } t=()

7

= max{ E Iflyt(Xt)I}
IT {Xo..-- )} t=C)

This proves the first claim. The proof of the second claim follows the same approach with more
attention to the identity of the maximizing control functions [tt(*).
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Appendix B

EQUIVALENCE OF THE SIMPLIFIED POLICY

We claim that maximizing J* is equivalent to maximizing JIT in the sense that for any optimal
policy 7r* there is an optimal policy fr* such that

To prove this, it suffices to show that Vo(Oo) = Vo(Io) VOo VIo = Qo. To accomplish this, we
will prove by induction backwards on t from i- to 0 by A that

Vt(Ot) = Vt(It), Vt E {O ... ,T} V6, Vit 3 Ot = T(tIt).

For the basis case, we begin with 1/7(07) and apply Eqs. (26), (20), (19), (16) and (17) to get

VT (0) = Ti (1 -T(T))
{i3Aj(T)=0}

= VT (IT)

which proves the basis case. For the inductive step we assume

Vt+A(Ot+A) = Vt+a(It+A), VOt+A V(Tt+A 9 Ot+A = T(t + A, It+A)), t E {A, ... ,r - A}

and must show that
Vt( A) = Vt(It), VOt V(It 3 0t = T(t, Ii))

Let 6t be arbitrary. Then, by Eqs. (18), (16), (19), (20) and the inductive hypothesis

Vt(It) = max{ E [Vt+A(It+A) fi (1-4WAI

pt(mt)a{t+AB [t+A(Ot+A)j (1t-Ti(t))]}

Observing that the function inside the expectation depends on no aspects of ht+A other than
Ot+A and that T(t + A,.) induces a partition on 't+A, we can now write:

Vt(It) = max{ BE [Vt+A(Ot+A) I (1-Ti(t))]}

When we write pt(It), we mean the control L(t) that is selected at time t. Together, Ot and
L(t) determine the distribution on 6t+A. Observe, however, that the value of the expectation
is a function of the value of Ot and the distribution on Ot+A. So, while different controls may
maximize the expectation for the same Ot, all must result in the same maximal value. Thus,
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any maximizing control may be chosen arbitrarily. Therefore we apply Eqs. (25)and (27) to
write

Vt(It) = maxI E
it(Ot) {Ot+A}

= Vt(Ot)

as was to be shown.

YI (1 - ti (t))]
iDAi(t)=O


